Position Statement of the National Alliance of Black School Educators
Approved by the Board of Directors, March 1, 2012
Physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students’ scientific literacy. Physics classes hone thinking skills. An understanding of physics leads to a better understanding of other science disciplines. Physics classes help polish the skills needed to score well on the SAT and ACT. College recruiters recognize the value of taking high school physics. College success for virtually all science, computing, engineering, and premedical majors depends in part on passing physics. The job market for people with skills in physics is strong. Knowledge of physics is helpful for understanding the arts, politics, history, and culture.
Currently only 25% of Black and Hispanic high school students take any course in physics1. Thus many do not even get to the gateway. The availability of physics as a course for high school students is not equitably distributed throughout the United States. While some schools provide physics for all who wish to take it, a more common scenario, particularly for urban schools, is limited availability2. The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency, and lack of diversity in the STEM professions.
In July 2011 the National Academy of Sciences released a framework for next generation of science standards. The framework consists of number of elements in three dimensions: (1) scientific and engineering practices, (2) crosscutting concepts, and (3) disciplinary core ideas in science. It describes how they should be developed across grades K-12, and it is designed so that students continually expand upon and improve their knowledge and abilities throughout their school years. To support learning, all three dimensions need to be integrated into standards, curricula, instruction, and assessment. The framework includes core ideas for the physical sciences, life sciences, and earth and space sciences since these are the disciplines typically included in science education in K-12 schools.
The idea of building up an integrated picture of science phenomena resonates very well with the principles of Physics First, the curricular strategy that sequences high school sciences courses beginning with physics in the 9th or 10th grade, chemistry in 10th or 11th grade, culminating with biology and earth science in the 12th; while developing proficiency in mathematics and computing in lock-step over the entire 4 years3. Physics First means more students will have the formal opportunity to learn physics and thus pass through the gateway to higher achievement and prosperity.
A first course in physics need not be overly saddled with advanced mathematics. The emphasis should be focused on conceptual understanding rather than mathematical manipulation. In fact conceptual understanding of physics need not wait until high school. Even middle school students can profit from a conceptual physics course. Conceptual understanding of physics taps into students’ natural curiosities of how and why the world works around them. That conceptual understanding is what will improve performance in later courses in other disciplines. As mathematical maturity is further developed, students can revisit the advanced mathematical expression of physics.
Given all the positive benefits, it is imperative that all students have the opportunity to formally learn physics in their secondary school settings. The National Alliance of Black School Educators (NABSE) therefore resolves:
• That all students should be afforded the opportunity to formally learn physics in their secondary school, starting no later than in the middle grades
• That Physics First, as a curricular strategy, should be implemented in all high schools
• That all NABSE members, especially those charged with STEM teaching, apprise themselves of all the issues surrounding Physics First and work collaboratively to build policy, curricula and lesson plans that will well-position our students for the 21st century.
• That NABSE will work with all our partners and fellow stakeholders to offer workshops, in-service training and in-service support that will help teachers at all stages of their careers develop, implement and teach in Physics First sequences effectively.
———————————————-
1. Compared to 41% of White students and 52% of Asian students. Source: Susan White & Casey Langer Tesfaye, Under-Represented Minorities in High School Physics: Results from the 2008-09 Nationwide Survey of High School Physics Teachers, American Institute of Physics, March 2011
2. Angela M. Kelly, Keith Sheppard, Secondary school physics availability in an urban setting: Issues related to academic achievement and course offerings, American Journal of Physics, October 2009, Volume 77, Issue 10, pp. 902
3. American Association of Physics Teachers [AAPT]. Statement on Physics First. Retrieved from http://www.aapt.org/Resources/policy/physicsfirst.cfm, 2002