#1. Federal Science Budget and Sequestration
The issue of funding for science is always with us. With few exceptions everyone seems to agree that investment in science, technology and innovation is fundamentally necessary for America’s national and economic security. Successive Administrations and Congresses have rhetorically praised science, and have declared that federal science agencies, particular NSF, DOE Office of Science and NIH should see their respective budgets doubled. Where the rhetoric has met with action in the last decade, recent flat-lined budget increases, and the projections for the next decade erode these increases in real terms, and in fact in the next few years the federal R&D budget could regress back to 2002 levels and in several cases to historic lows in terms of real spending power.
What is sequestration?
Last year Congress passed the Budget Control Act with the goal of cutting federal spending by $1.2T relative to the Congressional Budget Office baseline from 2010 over 10 years. The broad policy issues in the Budget Control Act follow from the fact that the total amount and the rate of growth of the federal public debt is on an unsustainable path. The Budget Control Act would only reduce the rate of growth but not reduce the debt itself. The basic choices are to increase taxes and/or to decrease spending.
The Budget Control Act also established the Joint Select Committee on Deficit Reduction, which was to produce a plan to reach the goal. If the committee did not agree on a plan, the legislation provided for large, automatic – starting in January 2013 (already one quarter through FY13), across-the-board cuts to federal spending. This is called sequestration. The committee could not come to an agreement, and as a result the federal government faces what has been termed a ‘fiscal cliff’ where simultaneously several tax provisions will expire (resulting in tax increases) in addition to the sharp spending cuts. This will most certainly plunge the economy into a recession.
Sequestration would require at least 8% budget cuts immediately in FY13 (the current year). In the political lexicon on this topic federal spending is divided into defense and non-defense. The current formula would put somewhat slightly more of the cuts on non-defense programs, but there is talk of putting all burden of sequestration on non-defense programs. If the burden is borne only by non-defense programs, some agencies could lose as much as 17%.
It is important to emphasize that these would be immediate cuts starting with FY13 budgets, so a $100K grant for this year would suddenly become $92K, or possibly $83K. Then from the sequestration budgets, the Budget Control Act would require flat budgets for the subsequent 5 years. While it would generally be up to the agencies to figure out how to distribute the immediate cuts, it is instructive to see how the cuts would impact agencies that are important overall to physics and astronomy research.
How does it impact physics?
The R&D Budget and Policy Program at AAAS has done a masterful job at analyzing sequestration and its impact on science agencies. The cases of DOD and NIH provide some general indications of the effects of sequestration. DOD is the single largest supporter of R&D amongst the federal agencies, and NIH is the second largest. Under sequestration they would lose $7B and $2.5B, respectively. Inside the DOD number is funding for basic and applied science, including DARPA programs. These accounts would lose a combined $1.5B. But there is an important dichotomy between DOD and NIH. IF the Congress and Administration decide to apply the cuts only to non-defense programs, the cuts at NIH would have to be deeper (to meet the overall targets), while the cuts at DOD would remain unchanged.
At NSF, if the cuts are applied truly across the board, $500M would immediately be eliminated from the agency’s FY13 budget. In a scenario where the cuts are applied only to non-defense spending the NSF cuts could be just over $1B. It would be as if the NSF budget had regressed back to 2002 levels, basically wiping out a decade of growth. To further put these cuts into context, NSF’s total FY13 budget request for research and related activities is $5.7B, including $1.345B for the entire Math and Physical Sciences Directorate. One billion dollars is what the agency spends on major equipment and facilities construction and on education and human resources combined. It is by far larger than the Faculty Early Career Development and the Graduate Research Fellowship programs. And put one last way, the cuts would mean at least 2500 fewer grants awarded.
Under the sequestration scenario where defense and non-defense program bear the brunt of cuts equally, the DOE Office of Science could lose $362M immediately in FY13, while NNSA which funds Lawrence Livermore, Los Alamos, and Sandia national labs, would lose at least $300M. Again these cuts would be deeper if the Congress votes, and the President agrees to subject the cuts only to non-defense programs. The Office of Science cut is nearly equivalent to the requested FY13 budget for fusion energy research ($398M). The Office of Science had enjoyed a fair level of support in the past decade, but sequestration would take the agency back to FY08 spending levels or to FY00 if the cuts are applied to non-defense programs only.
NASA would immediately lose at least $763M with the Science Directorate losing nearly $250M. Again these cuts would be much deeper if distributed only to non-defense programs. In that scenario NASA would immediately lose $1.7B in FY13, more than the FY13 budget for James Webb Space Telescope ($627M) or the Astrophysics Division ($659M).
What should you do?
In summary, the overall objective of the Budget Control Act is to reduce the federal deficit by $1.2T over the next decade. This would slow the rate of increase of the overall federal debt. The Act was resolution of political gamesmanship over raising debt ceiling, which has to be increased from time to time to authorize the federal government to make outlays encumbered in part by prior year obligations. The sticky issue was taxes. The GOP, which generally desires more spending cuts than Democrats, was not willing to agree to anything that involved a tax increase.
Besides wanting to preserve more investments in discretionary programs, President Obama was not willing to push too hard on increasing taxes given the weak economy, and probably wanting to avoid the adverse politics of increasing taxes before the election. Subsequently because the Congress could not agree on a way to produce $1.2T in deficit reduction over 10 years, the law requires sequestration of FY13 budgets, i.e., immediate and draconian cuts (8-17%), the mechanics of which would have serious adverse effects to the entire US economy.
Both before the election and after you should contact the President, your Senators and Representative, and urge them act urgently to steer the federal government away from sequestration and the fiscal cliff.
#2. Timeliness of Appropriations
What is the issue?
The US Constitution requires that “No money shall be drawn from the treasury, but in consequence of appropriations made by law.” Each year the federal budget process begins on the first Tuesday in February when the President sends the Administration’s budget request to Congress. In a two-step process Congress authorizes programs and top-line budgets; then it specifically appropriates spending authority to the Administration for those programs. The federal fiscal year begins on October 1st, and when Congress does not complete their two-step process, operations of the federal government are held in limbo. Essentially the government is not authorized to spend money. This is overcome by passing “continuing resolutions” that basically continue the government’s programs at the prior year programmatic and obligating authorities.
How does it affect physics?
Continuing resolutions wreak havoc for the Administration. They prevent new programs from coming online and the planned shutdown of programs. And because they cannot know what their final obligating authority will ultimately be, they have to be very careful with how much they spend. The consequences of over-spending obligating authority are unpleasant. Keeping a science program going under the uncertainty of the CR is hard, and in some cases impossible.
What should you do?
Physicists would be well advised to tune into the status of appropriations for agencies from which they get funding, plan accordingly, and use their voices to pressure Congress to finish the appropriations process by October 1st.
#3. Availability of Critical Materials: Helium, Mo-99 and Minerals
Helium shortage?
Helium is not only an inordinately important substance in physics research, but also in several other industrial and consumer marketplaces. But despite its natural abundance, it is difficult to make helium available and usable at a reasonable cost. Usable helium supplies are actually dwindling at a troubling rate, and price fluctuations are having very undesirable effects in scientific research and other sectors.
Most usable helium is produced as a by-product in natural gas production. Gas fields in the United States have a higher concentration of helium than those found in other countries. Those facts, combined with decades of recognition of helium’s value to military and space operations, scientific research and industrial processes, Congress enacted legislation to create the Federal Helium Program, which has the largest reserve of available helium in the world.
Enter the policy issues. In an effort to downsize the government in 1996, Congress enacted legislation to eliminate the helium reserve by 2015 and to privatize helium production. But the pricing structure required by the 1996 legislation led to price suppression, and thus private companies have been slow to come into the industry as producers, even as demand has been steadily increasing. So with the federal government’s looming exit from helium production, it does not seem that there is another entity with the capacity to meet the growing demand of helium at a reasonable price. The few other sources of usable helium available from other countries have nowhere near the US government’s production capacity.
To address this problem Senator Bingaman of New Mexico introduced the Helium Stewardship Act of 2012. This is a bipartisan bill sponsored by two Democratic and two Republican Senators. This legislation would authorize operation of the Federal Helium Program beyond 2015. It would maintain a roughly 15-year supply for federal users, including the holders of research grants. This should guarantee federal users, including research grant holders, a supply of helium until about 2030. It would also set conditions for private corporations to more easily enter the helium production business.
But since no action was taken in this Congress, it will have to be reintroduced in January 2013 when the new Congress convenes, and it will have to be taken up in the House after being passed in the Senate.
Mo-99 is in short supply too.
There are other critical materials for which Congressional action is pending. Molybdenum-99 is used to produce technetium-99m, which is used in 30 million medical imaging procedures every year. But the global supply of molybdenum-99 is not keeping up with the global demand. There are no production facilities located in the United States, but legislation pending in Congress would authorize funding to establish a DOE program that supports industry and universities in the domestic production of Mo-99 using low enriched uranium. Highly enriched uranium is exported from the US to support medical isotope production, but this is considered to be a grave global security risk. The legislation would prohibit exports of highly enriched uranium.
Again this legislation passed the Senate in the last Congress but was not taken up in the House. It will have to be reintroduced in the next Congress, which convenes in January 2013. But a technical solution announced by scientists in Canada and another by a team from Los Alamos, Brookhaven and Oak Ridge national laboratories may change the landscape for this particular problem.
Another piece of legislation called the Critical Minerals Policy Act sought to revitalize US supply chain of so-called critical minerals, ranging from rare earth elements, cobalt, thorium and several others. It was opposed by several environmental groups, and the economics of some mineral markets are attracting some private investment in American sources.
What should you do?
Urge the Senators and Representatives on the relevant committees to reintroduce the Helium Stewardship Act, the Critical Minerals Policy Act as well as legislation that authorizes and appropriates funding for Mo-99 production in the US.
#4. K-12 Education: Common Core Standards and the Next Generation Science Standards
What are the Common Core Standards Initiative and the Next Generation Science Standards?
In 2009 49 states and territories elected to join the Common Core Standards Initiative, a state-led effort to establish a shared set of clear educational standards for English language arts and mathematics. The initiative is led jointly by the Council of Chief State School Officers and the National Governors Association. In 2012 the ‘Common Core’ standards were augmented with the Next Generation Science Standards.
How does this affect physics?
The National Research Council released A Framework for K-12 Science Education that focused on the integration of science and engineering practices, crosscutting concepts, and disciplinary core ideas that together constitute rigorous scientific literacy for all students. The NGSS were developed with this framework in mind. The goal of the NGSS is to produce students with the capacity to discuss and think critically about science related issues as well asbe well prepared for college-level science courses.
Setting and adopting the Common Core and NGSS are not federal matters. The federal government has a very small footprint in the overall initiative. Rather the policy action on adopting these standards will at the state, school district, and maybe even the individual school levels.
What should you do?
Physicists in particular should be collaborative with K-12 teachers and help where appropriate to implement the curriculum strategies that best position students for STEM careers. Physicist-teacher collaborations are also very necessary to ensure that the content of physical science courses cover the fundamentals but also incorporate the forefront of scientific knowledge.
#5. State Funding for Education
National Science Board signals the problem
The National Science Board, the oversight body of the National Science Foundation, recently released report on the declining support for public universities by the various governors and state legislatures. According to the report, state support for public research universities fell 20 percent between 2002 and 2010, after accounting for inflation and increased enrollment of about 320,000 students nationally. In the state of Colorado, the home of JILA, between 2002 and 2010 state support for public universities fell 30 percent.
Public research universities perform the majority of academic science and engineering research that is funded by the federal government, as well as train and educate a disproportionate share of science students. But government financial support for public universities has been eroding for decades actually.
The issue is not so much the movement of the best students and faculty from public institutions and private institutions. All institutions of higher education are federally tax-exempt organizations, thus in some sense they all are public institutions. Rather the issue is support for the infrastructure that supports innovation, economic prosperity, national security, rational thought, liberty and freedom.
How does this impact physics?
In physics we saw the effects of declining support of higher education in Texas, Rhode Island, Tennessee and Florida where physics programs where closed. In other states budget driven realities have meant physics departments being subsumed by large math or chemistry departments.
What should you do?
Public and private universities will have to find efficiencies and yield to greater scrutiny as they always have. But physicists will have to stand up and remind their state governors and legislators of their value to institutions of higher education in terms of educating a science-literate populace as well as producing new knowledge and knowledge workers needed for innovation and economic growth.
#6. College Student Enrollment and Retention
Earlier this year the Presidential Council of Science and Technology Advisors released a report entitled Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering and Mathematics.
Economic projections point to a need for approximately 1 million more STEM professionals than the U.S. will produce at the current rate over the next decade if the country is to retain its historical preeminence in science and technology. To meet this goal, the United States will need to increase the number of students who receive undergraduate STEM degrees by about 34% annually over current rates. Currently the United States graduates about 300,000 bachelor and associate degrees in STEM fields annually.
The problem is low retention rates for STEM students
Fewer than 40% of students who enter college intending to major in a STEM field complete a STEM degree. Increasing the retention of STEM majors from 40% to 50% would, alone, generate three quarters of the targeted 1 million additional STEM degrees over the next decade. The PCAST report focuses much on retention. It proposes five “overarching recommendations to transform undergraduate STEM education during the transition from high school to college” and during the first two undergraduate years, (1) catalyze widespread adoption of empirically validated teaching practices, (2) advocate and provide support for replacing standard laboratory courses with discovery-based research courses, (3) launch a national experiment in postsecondary mathematics education to address the mathematics preparation gap, (4) encourage partnerships among stakeholders to diversify pathways to STEM careers, and (5) create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education.
How is physics impacted?
The New Physics Faculty Workshops put on by APS and AAPT were mentioned in the report for changing the participants’ teaching methods and having had positive effects on student achievement and engagement. The report also explicitly calls for NSF to create a “STEM Institutional Transformation Awards” competitive grants program. But the delegation that met with the Texas Board of Higher Education was confronted with student retention data in physics compared to other STEM fields, and was
This all ties together with federal budgets for STEM education and research, and to the issue of state support for public education. The lesson from Texas in particular is that physics must do a better job of retaining students in the major or face relative extinction in the academe.
What should you do?
PCAST would say engage your students to excel. Everyone involved in physics instruction should continually assess their teaching methods and student outcomes. Every thing from textbooks and labs used to the social environment of the department should be on the table for improvement.
#7. Attacks on Political Science and Other Social Sciences
When science is politicized, caricatured and ridiculed we all lose
In May 2013 the US House of Representatives voted to eliminate the political science program at the National Science Foundation. The effort was spearheaded by Arizona Republican Jeff Flake.
Congressman Flake is ostensibly concerned about Federal spending and wants to make the point there are some government programs that we must learn to do without. But the concern for scientists is the approach of singling out individual projects and programs and subjecting them to ridicule only based on their titles. This rhetorical and political device is used quite a bit, even in biomedical science. And when it is, it diminishes science everywhere.
All scientists should advocate for intellectual inquiry and its innate public benefits. Golden Fleece attacks against science may focus on genetic analysis in Drosophila melanogaster one day, political dynamics in a small foreign country another day, but it could be cold atoms on an optical lattice the next.
What should you do?
The bill eliminating NSF’s political science program has only passed the House. It was never taken up in the Senate. But in 2011 Oklahoma Senator Tom Coburn advocated for the elimination of the entire NSF Social, Behavioral and Economics Directorate. If either measure was to become law it would have to be reintroduced in the next Congress. Physicists should stay abreast of attacks on other intellectual disciplines, because one day those attacks can be directed at physics.
#8. Open Access to Research Literature
There is much public concern about having access to the output (manifest as journal articles) from publicly funded research. And scientists worldwide are of course very concerned about rising journals subscription prices.
Last December the Research Works Act (RWA) was introduced in the U.S. Congress. The bill contains provisions to prohibit open-access mandates for federally funded research, and severely restrict the sharing of scientific data. Had it passed it would have gutted the NIH Public Access Policy. Many scientists considered the RWA antithetical to the principle of openness and free information flow in science. Perhaps owing to much public outcry, the proposed legislation was abandoned by its original sponsors.
The United Kingdom and the EU have just adopted a policy where all research papers from government funded research will be open-access to the public. To support this policy financing for journals will sourced from author payments instead of subscriber payments. This is a major change that will require much transition in marketing, management and finance.
Open-access policy should balance the interests of the public, the practitioners of the scholarly field, as well as commercial and professional association publishers that add value to process of communicating and archiving research results. Scholarly publishing is a complex, dynamic and global marketplace. It is not likely that one solution will be satisfactory for all consumers and producers (which in this marketplace are sometimes one in the same). New business models, new communication strategies and realizations what the true demand for scholarly articles will likely be more helpful than precipitous government action.